e / Pﬁxgii@ 53?;% Aﬁw
A Reproduced Copy

OF

B SR L

NASA (- 113636

Reproduced for NASA
by the
NASA scientific and Technical Information Facility

FFNo 672 Aug 65

' CENTER FOR
(WMPU?E?ANb?FbCMM%TmMQW?EMjQQ

‘ Y r\

DIVISION OF EN FHN% RING O

~r=, . e

DROWN UNIVERSITY

,ii.‘;.méj”v"\” w (}

COMPUTATICN ON FINITL MACHINDS®

by

J. E. Savagel

% This paper presents results of one phase of research carried out at the Jet
Propulsion Laboratory, Californiaz Institute of Technology, Pasadena, Calif.,
under Contract NAS 7-100, sponsored by the National Aeronsutics and Spsce Admin-
istration. Portions of the work reported were completed at Brown University with
the support of the National Aeronautics and Space Administration under grant

NGR L40-~002-082 and the National Science Foundation under grant GK-13162.

1 Consultant to the Communications Systems Research Section, Jet FProphlsion
Laboratory. :

Computation on Finite Machines
by

J. E. Savage

Division of Engineering
and
Center for Computer and Information Science
Brown University
Providence, Rhode Island 02912

ABSTRACT

A measure of the "computational work" required to compute functions
is introduced where functions are viewed as the objects defined by program-
med general purpose machines or by special purpose mechines. Computational
work'is an equivalent number of logical-operations andit is shown that it
cannot be less than the combinational comblexity of the function computed.
A definition of the "computing power" of storage units is given and an ex-
éhaﬁge relation is established between the number of logic elements, cycles
and bits of storage required to compute functions. Four principal results
are that 1) seguential storage can be exponentizlly less efficient than
féndom access storage, 2) functions of more than modest relative complexity
should be computed using random access storage, 3) tasks should be assigned
to submachines in a computing éystem on the basis of the complexity of the
associated functions and the "work potentisl" of the submachines, and U)
checking for the validity of programs requires an amount of computational
work which is exponential in the maximal length of programs for most finite
ianguages= General remarks ere also presented concerning the organizaﬁion o

large computing systems.

I. = Introduction

In his 1970 ACM Turing lecture, Minsky [1] voices a complaint which
'isﬂheardyfrequent}y of;late,rnamely, "The trouble with computer science today
is an obsessivg concern with form instead of content.” He then suggests by
analogy with physics that "the recognition of exchanges (such as the con-
servation laws) is often the conception of a science, if quantifying then
is its birth." One purposé of this paper is to develop several relations
vhich are almost exchange relations between the inherent complexity of s
function and the time, storage capacity and number of logic elements used
to compute it. Another purpose is to apply these relationg to the study

of the rclative computing powers of storage units, thé effort thst must be
gxpeﬁded to translate languages and to develop general principles for the
aésign and use of general purpose and special purpose computers.

The starting point for analysis is to observe ﬁhat conmputing mechines
are programmed to compute finite functions, that is, functions whose domain
and range are fipite. By focusing on the function, the program loses some
of its importance since many programs exist for the same function. Next we
observe that staﬁdard models for computers are required if the relative
difficulty of computing functions is to be measured. Therefore, we assume
that computers are reduced to sequential machines or to a collection of
(not necessarily synchronous) sequential machines and that each machine be
construcﬁed from logic elements from sone fixed set (0 and from memory cells
which are accessible from input and output; As ve shall see, this last

assumption assures -that computation in the models is done-by logic elements

and not in part by storage units. It is then possible to define "computa-

tional work”" as the number of logic uses by a model and to relate this to the
& ¥

ey

combinational complexity of the function computed. This is defined as the
minimun number of logic elementé required to compute the function with a
combinational machine using elements from (2. These ﬁopics are discussed
in Section 2.
As mentioned above, the computatidnal work done by a computer is
~measured by the number of logic uses in a model for that computer which
~is created using logic elements from (2 and individually accessed. menory
cells. When models are created for either tape or random access (r.z.)
storage units, it is found that the models require a number of logic elements
proportional to the number of bits of storage. From this fact, it is deduced

in Section 5 that to compute complex functions on general purpose compubters

i
!
EX

with tape or r.a. storege requives that the product of storage space and

ci

time‘be large. Similar but veaker resulés apply to disk storage. It can also
be deduced that the time required to compute a function with tape storsge

must grow at least as fast as the sQuare root of the combinational complexity
of the function whereas a function cen always be computed in a time independent
of complexity with random access storage if enough storage is avaiiablGG

In fact it can be shoun that‘disk and tape storage are exponentially inferior
in computation time to random access storsge for most functions of n variables
over a fixed alphabet. This information can be used to determine whether to
allocate sequential or random access storage to a given problem on the basis

of its complexilty. It also suggests that Turing-like machines, that is, tape

machines with a small finite control, are poor models for the computation

of fuﬁctions which are moré than moderately éomplex.
Work potential is defined in Sectidn 6 as the maximum amount of
- work which a machine is capable of doing in a given time. 'The work potential
of random access storage, for example, is proportional to storage capacity
divided by cycle time. Work potential can be used té estimate the total
astorage required in a computing facility and to prevent mismatch between
problem and machine.

Another major topic considered hefe is that of program verification.
In Section 7 we considerhthe conputational work required to determine whether
or not a string of symbols is a member of given finite language L. We show

‘that this work grows exponentially with the maximum length of strings for
most languagesovgr a fixed alphabet. We also bound the work required to
éetefmine vhether the number of left and right parantheses is equal and we
show that the work grows no faster than as the cube of the length of the
Yongest allowable sequence.

An intereéting bisociation of ideas is exhibited in Section 8. We
combine . the relation between work and combinational complexity with the
Heisenberg uncertainty relation to éhow that most Boolean functions of 160
variables cann&t be computed in one hour with one‘kilowatt‘of powefﬁ

In Sections 3 and Ut we examine the combinational complexity of func-
tions and efficiency of computation, respectively. The reader interested
‘in functional complexity will want to read these sections before going on.
Others, however, may wish to jump to Section 5 and later sections after
reading Section 2.

The "computational workﬁ measure was first introduced.in‘an earlier

paper on the complexity of decoders for crror correcting codes [2].

o, Machine Models and Computational Work

We shall‘adOPt the view thal computing machines are collections of
sub~machines which may or may not be driven by a common clock,

ihi§cis an idealization which allows us to derive results and yet giﬁes a
reaéonably accurate description of existing computing systems. Xach sub-
mécﬁine is‘moéeiedpby a sequential machine S with an appropriate input
alphabet I, output alphabet O and state set S. Given that S = (5,I,5,%,0)
is in state ¢ and input i is applied, it moves to a next state é(c;i) and
produces output A(c,i) where § and A are nexf—state and outpult functions,
respectively. The functions & and A are realized by logic and the machine
‘state is stored in memory as indicated- in Figure 1. (L designates logic and
M designates memory.)

We shall recognize two types of machines, the autonomous sequential

machine (ASM) and the driven sequential machine (DSM). ASM's model

the conventional mode of operation of general-purpose computers where the

N

initial state carfies all tpe information about the function to be computbed.
In the ASM, we allow thé state set S to have a distinguished state, H, which
is célled the halting state; we assume that the final output is prqduced as
the machine halts, and that this output is some projection from the final
state of the machine. An autonomous machine may produce outputs on every
cycle of computation and the outputs will in general be a projection from the
current state of the machine. However, since we wish to associate a function
with computation by autonomous machines, we shall assume that the résults of &
computation are contained in the final state op of the machine and designste
the machine output by X(GF). Then, if the\initial state of an ASM is Ugo ¥E

say that it computes the function fS defined by

£ (v,) = Mop) - (1)

w0
b

We also denote by Ts(go)ﬂ the number of cycles executed by S with initial s
O'O-

A DSM will be given T inputs X3s Xps «ee5Xp, some of which may be fixed,
and have. an initisl state Og? which may or may not be fixed., We assume that

the machine produces T outputs Yis Vo5 eoes¥qp and that it halts at the end

of the;Tth cycle. Thus, it computes a function fs defined by

fS.(O‘o’Xl’XZ"."XT) = (y19y29 "'syT) 62}

1

(A(coﬂxl))k(dljxg),oao,x(GT”lJXT))

vhere

o; = 6(Ui-l’xi) : (3)

The driven machine may be used to model computation by an autonomous machine
since the output A{g,) can be transferred to suxiliary storage at the ond of
computation and the machine allowed to run until it completes Tmax cycles

where

To complete the DSM model for the ASM, the appropriate amount of logic
must be added td transfer the value X(UF) to auxiliary storage at the end of
Ts(co) cycles.

A standard form for a sequential machines is needed if the relative

difficulty of computing functions is td be measured. To achieve this end, wve
assume that a machine is to be constructed of logic elementes from some fixed
universal se£ Q and from compatible and individually accessible memory cells,
The set () might contain the set of binary gates with two inputs ("fan-in" of 2)
or it might be the single oiement universal set consisting of the two-input

NAND. The memory cells can be vieved as delay lines which store one letter

from the input-output alphabet of the logic elements in Q. Fach cell is
assumed to have accessible input.and output leads.

| If a machine is not of étandard type, we create a standard model for it
%o assess the amount of “computational work" it performs to compute a function.
‘ﬁheh this is done.in Section 5 for several types of storage units, such as
éeéuéﬁtiglgénd random access units, we acquire important new information about
storage-%iﬁé‘tradeoffs.

Assume now that the function T is comnuted in T cycles by a 'DSM which

is in standard form and which has X logic elements. Then, such a DSM does a

computational work

W= XT

foucompute f« The combinational complexity of T, Cﬂ(f), is defined as the
minimum nunber of logic élements}from 2 required to compute iy with'a combi -
national machine (a DSM with T = 1). We ‘then have

THEOREM 1 Let Sl’SQ""’Sk be k interconnected DSM's with Xy logic elements,
l = A £ k, and which execute '1“‘e cycles, 1< L < k, respectively, to compute

the function f defined on their initial states and the inputs. Then, the

computatlonal work W which they perform to compute £ must satisfy

k
W =z X1, > C(2) (
=1
PROOF Since storage in machine Sg consists of an array of accessible

cells, the state output of its logic unit can be fed directly to the state
input of a copy of itself. Thus, the combinational machine of Figure 2 can
| be'formed which realizes the function computed by Sg' This new machine has

XﬂTz logic elements and is supplied .exoctly those inputs which would

\J1

S

be supplied to S£ in time. Since each machine can be

stretched this way, a combinational machine ﬁith W logic elements can be

formed which computes f. Since CQ(f) is the minimal combinatiohal complexity
of f; (5) follows. o Q.E.D.

f;’There are several reasons for calling W computational work. First,

bne use of a logic element from () can be said to conétituﬁe one unit of com-
45ﬁ%é%ionél’ﬁbrk“and‘the use of X logic elements T times can be said to
constitute XT units of work. Second, the work performed by each machine in

a collection of machines can be added and.the relation given by (5) holds. This
says that a minimum amount of work must be dgne to compute a function f. The
dependence on the set QO is important and two measurements of work must refer
to the same set 2. Usually, one would choose () to be a small set of basic
elements since if () were unlimited it might contain £ in which case CQ(f) = 1,

It should be noted that (5) applies whether or not the machines
Sl’ S2, ""Sk have a common clock, commén cycle lengths or run for the same
number of cycles. All that is required is that outputs are produced by a
machine when needed by dependent machines. Ve also note that (5) implies that
parallel computation on large machines cannot improve on computation time by
more than the number of degrees of parallelism if com?utation on a single
machine is doné with a nearly minimum amount of work.
We turn now to the ASM and generate an inequality like (5) for it.

THEOREM 1! Let S be an ASM which in standard form has X logic elements and
‘which executes at most Tmax cycles on any initial state. Let S compute £ and

assume that the velue of £, A(op), is a v-tuple. Then,

(x+ av)Tygy = Glt) | (6)

for a small constant a, if the halting condition is indicated by a binary

variable,

c

PROOF Since the set O is universal, some fixed number a of elements

from (O can be combined <to form a gate to transfer a digit from the v-tuple

X(co) to auxiliary storage under control of the halting signalﬁl A total of

gv eléments can be then be added to_S to effect the transfer of X(OF) and

4o await the completion of Tmax cycles. The new macﬂine is & DSM with

X + av logic elements to which (5) applies. | Q.E.D.
Because of this result, we now adopt the convention that every ASH

runs a fixed nunmber of>cycles Thax to compute its associated function. The

computational work done by an ASM, then, is defined exactly as it is for the
DSM, namely, as the product of the number of logic elements it contains and
Tmax.

3. Combinational Complexity

The combinational complexity of a function f; Cn(f), relative to the
logic set 1 is defined above as the minimel number of logic elements with
which I can be computed by a combinational machine. While our objective
-skould be to develop simple methods of estimating CQ(f), this is found %o be
very difficult,., Our results in this connection are limited to a test which
guarantees a linear lower bound to CQ(f). The bulk of this section is a
summarycﬁ‘the]ﬁmitxiknowledge now aveilable on combinational complexity.
R »Lét 258 = {O,l, cees a=1} and assume without loss of generality that
this is the input and output alphabel of elements in 1. If Q is a universal
set of logic elements then any functien f: zgg—égq' can be realized by a combi~
national machine with components from () and C;(f)ais well defined. ibe class
of Boolean functions, nemely functions with domain zgpland range Eg , 1S

s 2
well known and every Boolean function has a unique disjunctive and conjunctive

normal form expansion. In the disjunctive normal form of a function

¢y ¢ c
f(xl, cees xp), the Jlogical OR is formed of minterms x Ly 2., .x P (Oi = 0,

1 ¥p %
1 and x? = Xi xi = ?i) and a minterm is included if f has value 1 vhen
Xi =(Ei, 1 <i<£p. A ninterm is the logical AND of variables x; or their

logical INVERSE (also known as negation or NOT). We.conclude that the sel of
two-input AND, OR znd NOTgatesfbrmezuniver;alsef. There are many universal sets
Q2 with gatés which have a fan-in of 2 or more.

A Boolean function can also be given by a truth table as shown in
»Figure 3. (The disjunctive normal form is also given.) There are ép rOWS
in 2 truth table for a function f: 22-»%5 so there are 22p distinct Boolean
functions of p variables. Similarly, there are aqap functions f: :Z“”%Z%q .
Lupanov [3]has shown that most Boolean functiong of p variables can be
realized with combinational comp%exity which does not exceed %§ (l+é)
where ¢ - 0 as p = ®, Here () isschosén as the set {AND, OR, NOT} with fan-in

i

N ¢ P
of at most 2. This implies that CQ(f) < g —25 (1+e) for f:Z“‘*‘Z and it can
, 2~

be shown that
e (e) = &ﬂ%-li’fl - (7)
a. ~ : : ,
for f:j;g~§€ , e(p) » Oas p=- @, by creating a binary function for each of
these functions and using Lupsnov's result,
| There are several special classes of functions which are of interest.
One is the class of symmetric functions which are functions f:iggﬁgizq which

satisfy

f(xl,xg,.,,,xp) = f(xil,xie,,,,,xip) | (8)
" vhere (iljig,...,ip) form a permutation of (1,2,...,p). There are N such

functions where

w0

(s
< "‘l’
NS = aq a ’ ' {9;\’

This is equal to Zp'l for Boolean symmetric functions of p variables (a=2,
g=1). It can be shown that the Boolean symmetric functions can be realized
with

2
]
CQ(f) <o p log, p | (10)

for o a constant and (the set of binary connectives with fan-in of 2. The
‘demonstration of this fact uses (5) and follows from the observation that two
counters counting to t and t+1 (and containing < « logg(t+l) logic elements)
can be used for p cycles to determine if Xl’XQ"'°’Xp contain exactly t 1's.
"This can be done for each t for which f has value 1 and £ formed by taking
the OR of the counter outputs.

Another iﬁteresting class, the set of linear functions f{izl%izq
can be realized by matrix-vector produclts. A mabrix gill have pg enL;zes

and for large p and g, it is clear that
Cy(f) s ppg - (1)

for B a constant. Note that there are exactly 2P linear functions.

We now apply sane simple counting arguments to obtain lower bounds on
the combinational complexity of most functions in 2 class. These argunents
were introduced by Shannon [4] in the study of relay networks. We begin by
overbounding the number of combinational circuits which contain C or fewer
Alogic elements from Q. We then choose a value of C such that the number of
éircuiis that can be created is an asymptotiéally small fraction of the number
of functions to be realized. This value of C is then a lower bound to the

combinational complexity of most functions in the class.

-4 b

Let 2 contain lQ! elements and assume that each element of Q has a
fen-in of at most r- andjE; is the input-output alphabet of Q. ‘Then, a com-
binational circuit with p inputs, g outputs and c elements has at most
q + ré leads to which signals can be applied. These are the g outputs and the
inputs to the ¢ logic elements which do not exceed ré in number. There are
aat most ¢ + p + a signals corresponding to the pexternal inputs, the outputs
of the ¢ elements and the a constant signals 0,1,...,a-1. Assume that some
fixed cholce has Been ﬁade Tor the ¢ elements. Then, since only one signal
can be attached to each lead, there are no more than (c +p + a)(q+rc)
different ways to conﬁect signals to leads. Additionally there are at most
]Q[c choices for the c logic elements.

LEMMA 1 The number NQ(C,p,q) of distinet combinational circuits with C
or fewer logic elements from O énd having p inputs and g outputs is bounded
by - ' ’ 1

/r
NQ(CsPsQ) < [‘Q! (C +p + a)

(rC+g+l)
| (12)

vhere r is the maximum fan-in of elements in Q, ‘O‘ is its size and a2 is the
size of its inﬁﬁt-output alpﬁabet.

The proof follows from a straightforward bounding of terms in the
sum involved.

To apply this result suppose that we have a eclass of N functions for
which p, q, a are fixed and suppose that ‘Ql and r are also fixed. Then, if

we choose C = C, so that the bound of (12) equals Nie

s 0 < e <1, then the
fraction F of these functions with combinational complexity C, or less cennot

exceed F wvhere

F s (C,p, a)/N ¢/ = H/we (13)

~12-

which is small if N is large. This leads to the following theorem:
p q
THECREM 2 Most of the functions f:ji—-gg in each of the following classcs
‘ 8 a
have a combinational complexity which is greater than the indicated CO for

a, v and |q| fixed:

1) Symmetric functions Co = (1-¢') alpt) . a=2 (1ha)
TR R oL onn desaosrTonel Ee i'lOgQP
q fixed, p >> q .
C = =c a- —_—i a>2 (1hb)
o r 1og2p a-1
‘ ~¢! a ‘
2) Linear functions C, = il;E_l. EELEQ}SSEE (1khe)
log,(p)
p,qa large
Y
o q a© log.a
3) All functions ¢ = (e) 22 (1ha)
. o g P 1og2aﬂlog2q
ps;q large

Here ¢' is fixed and 0 < e' < 1.

. A comparison of these bounds with the upper bounds mentioned in text
shows that the bounds are sharp (In (1L4d) the results is sharp if log,q << D).
A fair criticism of the above results, however, is that they provide no informa-
tion concerning the complexity of a given function. One can also criticize

on the grounds‘that one usually does not want to compute most functions f:

ES?_£§:Q and is interested rather in computing the less complex functions.
a a

Nevertheless, the imformation provided by the bounds has applications.
Muller [5] has observed that a change in the logic set Q results in
at most a multiplicative effect on combinational complexity. This follows
because every element from the old sect can be replaced by a small nunber of
elements from the new logic set. This zccounts for the insensitivity of the

bounds to the size of Q.

There is a simple test which can be applied to a function which may
yield a linear lower bound to its complexity. We develop it as follows:

DEFINITION A function f(xl,xg,,..,xp) is essentially dependent on X if

there exist values for Xj’ 1sj<=p, J % i, and two distinct values for X9

namely, a8y and 55 such that

f(xl,...,xi_l,al,xi+l,...,xp)%f(xl,...,xi_l,ae,xi+l,,..,xp) (15)

Given that f(xl,o}.,xp) is essentially dependent on X5 the dependence is non-

-) ' }

trivial for eachpair al,az,al#a2 “there exist values for Xy 1<js<p, jfi
A

such that (15) applies with equality.
/

: P a
IEMMA 2 It f:za—agg is essentially and non-trivially dependent on J
a Ta ‘
of its variables, then

/CQ(I’) > 4fr | . | (16)

where r is the maximum fan-in of elements in Q. When g = 1 and f is essentially

dependent on 4' of its variables then
co(f) = (4'-1)/(xr-1) (17)

PROOF The £ variables on which £ is essentially and ﬁon-trivially
dependent can effect the value of f but none can uniquely determine f. There-
fore each ofthoe inputs in a combinational circuit for f which correspond to
these variables must pass through logic elements. Thus, at least f/r clements
of fan-in r are needed.

When g = 1, each of the £' inpuls must pass thréugh logic eiements S0
at least (2'-1)/(r-1) are needed. - Q.E.D.

It is clear from (17) that the bound of (1la) in Theorem 2 can be
improved when q = 1. Tt is also clear that (16) and (17) provide lincer

lower bounds when £ = £' = p. No tests are known which guarantee lower bounds

that grow faster than linearly in p.

A case that has not yet been examined is that of a function whose
domain and range are not coincident with tuples over the input-output alphebet
of {i. For such functions a coding will have 4o be assigned to their variables
and values. Such codings may have an important effeét on their combinational
complexity although it can be demonstrated that the combinational complexity of
most functions f::i?—g§;q will not be substantially affected by a coding when

a
p is large, log q/p << 1 and a, b fixed.

L, Computational Efficiency

A computational procedure can be said to be efficient if the function
it defines is computed with nearly minimal computational work. In this section
we demonstrate that procedures exist for many functions of low as well as
high complexity such that they can be computed efficiently by sequential
machines. It is not clear whether the same is true of functions which have
modest complexity. It may be that they are efficiently computed only by
minimal combinafional machines, H

To substantiate the above, we consider only Boolean functions and
suggest that our reasoning applies to other finite functions. Let O be the
set of binary logic elements with r = 2 inputs and consider the function

..,xp; Applying Lemma 2, equation (17)

:A(Xl""’xp) which is the AND of x,,.
and using the fact that fA can be realized with p-1 elements from (O, we have
CQ(fA) = p~-l. A sequential machine which computes fA in T cycles is shown in

Figure 4. The p values for variables are grouped together 4 at a time and
stored in individually accessible memory célls. (1's are used to fill out the
last row.) A group of‘ﬂ vaiueé.are AND-ed together in an ﬂ—inpuf AND and
the result is then combined in a 2-input AND gate with a previous product. 4

1

total of 4 2-~input AND gates are used in this machine. If the machine excoutes

-1

T cycles, we must choose ¥ 4 = !b/f] and thé computational work WA done is
given by
W, = XT = i-p/T_l T o (18)
pPpsW, <2p

A
;Thié says that fA’can be computed by sequential machines in. T cycle, 1 £ T < p,

:wiﬁh‘anhefficiency no worse that about .5.

Another simple function is the minterm fB(x ..xp) given by

1270

c, ¢ c
_ ., 1 72 p
fB(Xl’XE"f'Xp) =X Ay Teeaxy (19)

B

gates for a_computatioﬁal work WB where

'As shown in Figure 5, f, can be computed in T cycles by a machine with 2g§/f{

Wy = 2 [ﬁ/ii- T
' ‘ (20)
< W_ . <
2p = Wy Lp
and for an efficiency no worse than about .25, since CQ(fB) = p-1.
Arbitrary Boolean functions are computed directly from their minterm
expansions by the machine of Figure 6. This machine executes T = m cycles,
vhere m is the number of minterms, and it has 2p logic elements for a COompu-
tational work Wc given by
W, = 2pem < 2p 2° (21)

since m = 2P, Also, each minterm could be calculated in more than one cycle

vwith an additional factor of no more than 2, as seen above. We demonstrated

* {X} is the smallest integer greater than or equal to x.

=10

in the last section that most Boolean functions of p variables have
SN D (e
c(f) > 2 /p B (22)

which indicates most Boolean functions can be computed by sequentisl machines

in T cycles, 1 £ T = oP yith an efficiency bounded below by a gquantity which

e ~

ié\iﬁVéféélyvproporﬁional to p2. It is very probable that this result can

‘Béréubstantiélly improved.

5 Computation on General Purpose Computers

Storage units which can be directed to read one of many stored words
possess the power to compute. In this section we measure %he effective com-
puting power of several storage types and determine relations between the
time and storagé required to compute functions. We also show that tape and
disk storage can Be exponentially inferior to random access storage in the time
required to compute functions. This information cen be used in multiprocessing,
multiprogramming, ér time-shared Systems to increase system efficiency. In
this section, we aésume that the length of a read-write cycle.is the same for
all storage t&pés and treat the other case in the next section.

Let us describe the state of a storage unit by a pair £§} hlvwhere

s is an M-tuple 6f words from the alphabetzg;land h, 1 < h.s M, is an integer
which is the address of the word in ¥ being examined. If the storage unit con-
sists of an array of individually accessible memory cells M = 1 and w is the
number of states which the array can assume. In a tape unit the position of

the reading head at time T, ht’ is related ifs position during the previous cycle
by by = h j+ {0,4#1,-1}. TIn a random access unit h, end by o

= +]. if < i = herwise. usa.
L =By g#lAfh) <Mand b = 1 othervise. Thus,

a disk unit is a tape unit with tape ends joined and which moves onc step to

are not necessarily

‘depenaent, In a disk unit h

the right at the end of each cycle.

We now create models for each of the storsge units using logic elements
from a set Q and individually accessible memory cells. Without any great loss
of geﬁerality we let {2 be the set of binary gates of fan~in 2 and let the
cells be binary. A model for a disk unit with alphabet of size w = 2 is shown
in Fig. 73 it has 3 logic elements. For alphabets of size w, the model will
'contain Pd logic elements where) | _

o P, =3 {ioge ﬁ] (23) |
 Also, Pﬁ must satisfy

P, > [loggw] (2k)

since access to every bit in at least one word is required.

The models for tape and random access (r.a.) units are more complicated.
In an r.a. unit an external control produces one of M signals designating the
P . /

word to be read. We represenit such a signal with n = [log n

a circuit of n inputs whose 2" outputs are the 27 @ifferent minterms in n

variables. Thus, a given output is‘l if some one pattern n inputs occurs.

The minterm outputs are then used fo gate inputs and outputs from the storage
unit through circuits like that shown in Fig. 8. Here i3 is the first bit of
information to be gated ipto a cell and it is gated into the cell shown if the
minterm T2 has value 1. If w is the size of word alphabet, TZ and each other
minterm will control [ioggﬁl cells. Thus, the model will contain h[iogngM

gates for the M words of storage and require Iiogéﬁl (M-1) OR gates to combine
the outputs of celis. The circuit_g{n) to create the minterms can be iteratively

1),

n
realized as shown in Figure 9 with no more than 2 < L (M-1) gates. Thus,

& model for random access storage cen be realized with P logic elements vwhere
& ra

M5 | i 5)
Pra < m(nx)[loggxl) (25)

w3l

It is also true that

-

P, =M I-logzx;[| (26)

since every bit in each of the M words must be accessible through logic.

Tﬁé difference between tape and r.a. storage is fhat only two bits
6ficdntrol information are provided to a tape head to direct it to move right,
i;ft, or not at all. The position of the head can be retained in dyadic form
in an auxiliary storage unit and a change in head position effected by adding
+l, =1 or O to the integer in storage. The adder can be reslized in logic with
a number of logic elements proportional to (log2M) . The [ioggM bits repre-~
.senting head position are theﬁ supplied to the model for réndom access storage.

The tape model has Pt logic elements
P, < M(k+5 !-logew‘l) + cr(logQM) (27)

for some small constant o > 0. For the same reasons given above for random
access storage,

34 ' \
P, =z M[logeg‘ (28)

DEFINITION The compubing power P of a storage unit is the minimum number of

logic elements from () needed to simulate the unit with gates from (and indi-
vidually accessible cells.

Bounds on the compufing power of disk, random access and tape storage
units are given by (23) to (28) when Q is the set of binary gates with two
inputs. These results apply to one %track tape units and one loop disk units.
Clearly if & tape or disk unit has m {tracks or m loops, the bounds given are

10 be multiplied by m.

The significance of computing power can be demonstrated as follous:
Let S be a small sequential machine which acts as a finite control for a
storage unit. Let S in standard form have X elements and as stated at the end
of Section 2, assume that S and the storage unit execute T cycles to compute

f on every point of its domain. Then, from (5) we have

(X + P)T = cy(1) (29)

because S and the.storége unit in standard form have X + P logic elements,

THEOREM 3 Consider storage units which have M words of storage over jg;

and assume that w is a power of 2. Let the total storage measured in bits,
45£= M logow be much larger than the equivalent number of logic elements X

in the associated control S. Then, the following relations apply to r.a. storasge,
nm~tape and m-disk storage with equal length tapes and disks
random access ’a{Tra > Cﬂ(f)/[9(1+el)]
G tape e, ey n)/T9(e,)) (30)

disk ' Ty = CQ(f)/[3m(l+e3)]

Also, on tape machines

T, =v/Co(£)/[9m(1+ey)] | ()

Here €15 €55 and 63 approach zero with increasing m and/or ei.

PROOF The derivation of (30) follows from the preceeding arguments,
Equation (31) follows (30) by observing that Ty = 2§7m since 1) all m heads

are placed at one end of their tapes before the computztion begins and 2) if
~Tt <,€iym, the m heads cannot use a total of,ef or more bits of storage. -Thus,
ziT < T e | E.D

- .t m ‘t e . Qoixn &

The first two inequalities of (30)'suggest-eqnivalcuce between rendom

access and lape machines, an equivalence which may hold for functions of

small complexity but certainly camnot hold for most functions as we show
below. The last inequality of (30) and that of (31) suggest a very clear
Superiority of tape over disk, et least for functions for which Cﬂ(f) is
large. These resultsAalso suggest a hierarchy with disk at the bottom and
random access at the top and a marked difference betﬁeen the time in which
each can compute complex functions. 0

THEOREM L4 * For p,q large, most functions f:jg;“€§:q will require,éio or

a
more bits of storage for their computation on general purpose computers,

where
, o p .
A, = (1-e)a oF 1og, (32)

and 0 < ¢ <1, ¢ fixed. Also, any of these functions can be computed (with

unlimited storage) by a general purpose r.a. machine in Tra cycles, wvhere

/

: 1ogea
T.,= (p+q) igé;g (33)
but most of them will require
T, 2 ,ei;/m

7.2 of / w
a m

gn general purpose m-tape and m-disk machines, respectively, when p and q are
large. |

PROOF The storage required to compute £ on a general purpose machine
cannot b% less than the storsge required to describe f with a program. But
at most wj

J=1
This sum is no more than 2wM for w 2 2 and if we choose M to satisfy

distinct programs (sequences)cenbegiven of length M or less.

Peq_ .
2wM = g8 (1-c) (35)

then the fraction of functions which can be programmed with M or Tewer words
approaches zero with increasing p and q. Thus, most functions will reguire

an M larger than the solution to (35) or,egz Mlog.w = gé;’bits of storage.

2
Equation (33) follows from the fact that "teble look-up" can be used

with r.a.Astorage to compute functions and the time required by this pro-

N

éééurelis éhé time to read the daté point on which f is to be computed plus the
%iﬁe“€$ féad its value. This is given by (33). The bounds of (34) follow
from the fact that Tt 245?m and Td zégvm,'as discussed above. Q.E.D.

The implications of Theorem 4 are 1) that a lot of storage is required
to compute most functions f:§5§7§i;1(which is not unexpectéd) and 2) that
‘sequential storage can be exponentially inferior to random access storage
in its use of computation time.

COROLLARY For é,q large procedures for the computation of most functions
f:§g§~£§:: on-tape or disk machines must be grossly inefficient. In fact, they

will require a computationzl work bounded by
2
W, > (1+e2)£4; /m
(36)
2
Wy > (l+€3)£d; /n

vhere ¢ and are quantities defined previously. On the other hand, any
®) : 2

22 €3

of these functions can be computed by an r.a. machine with a work

logga

(ve)) 5
WS Ti‘_';)L‘" fio(p'f'q)

loggw

vhere ¢ is that chosen for (32) and € has been previously defined.
We conclude that for most functions random access machines are far
superior as computers to machines vhich use sequentisl storage, The bound on

Ty in Theorem 3, equation (31) and the result of (33) however, suggest that

tape and random access may be nearly equivalent for the computstion of functions
whose complexity is not too great. This in turn suggests that problémg might
be assigned in a large computing system to each of the storage units on the
basié‘of their complexity. There is no dpubt that this point could use further
study. .

The comparisons made in this section between the several‘models of
gfﬁr;gevuﬁité have been made under the assunption that the read-write cycle for
each is the same. In the next section we consider the "work potential’ of

machines for which this requirement is relaxed,

6. Work Potential

The-potential for computational work by a machine or work potential

W(t) is the ma xinum amount of work of which a machine is capable in t seconds.

‘As we shall see, this meassure will give some rough idea of the quantity and type

of storage to purchase for a computing facility and will suggest a strategy

for the 3581gnment of storage unlts to problems in a large computlng systemn.
Con31der a system con31st1ng of the machlnes Sl 82,...,Sk and assume

that they have Xl’ XQ""’Xk logic elements in standard form and that the

‘length of their cycles are TysToseeesTy. Then, the maximum amount of work
of which this system is capable in t seconds is given by
k
z t |
W) = (=) (38)
A=1 £ ,

since at most t/TL cycles can be completed by S.z in t seconds. If

X, /7, > Xif7o S | (39)

then S£ may carry the major portion of the work required of the gystem,

Suppese the k machines S, ...,S, are each general purpose with a large
amount of storage. Then,

X, ~ Py ‘ ‘ (10)

whe?e PE is the computing‘power of the zth storage unit. Combining (39) and
;(hé); we‘ géé thaéythé‘siZérdf PZ/Tz, which is proportional to total storage
ifo¥-random.access and tape is an important determinant in the amount of work
which a machine cah prodﬁée.

-~ Rules of Thumb

1. If possible, assign»tasks to machines on the basis of the size of
Pz/Tz .
2. To prevent one storage unit from assuming most of the work load,

choose units to satisfy

5w
e (L1)
T3

™

e

B |
b

In the absencé of other criteria these rules of thumb may prove useful.
In particular, it shows the extent to which slow but large tape storage units may

be comparable to faster but smaller random ‘access units. Since tape units can

be a factor of 100 or 200 times slower than random access (core) units, at least

a factor of this size in storage is necessary if tape is to play an important

role in general purpose computers.

Work potential can also give some idea of the total storage reguired of
a given type when the maximum allowable run time is fixed and the combinational
complexity of the most complex problem the machine is likely to be given is

known. Suppose random access storage alone is to be used of cycle length

T = 10"6 sec. and total storage,@f. Suppose also that the most complex problem

has complexity Cﬂ(f)'= pu R f::EfLégz, for p = th. Then, if t = 1 hour
2 2

~is to be made available for this problem, we require that

g{ ~ .16 ;)
—t ¥ cy(f) =10 (k2)
This implies that
s 2.8% 106_ bits (43)

of storage will be required or if each word céntains 32 bits this would corres-
pond to about 90 thousand words of storage. This is considered a substantial
4amount of core storage by today's standard. It is interesting to note that at
least 2.8 x 108 bits of storage would be required with tape if the tape cycle

length is 100 times smaller.

T Program Translation

We shall use the term "co@piler" as the generic name for any machine
or program which translates one language into’énother. Thus, a compiler might
translate Fortran into machine language. In this section we show that one
problem associated with compiling, namely, verifying that statements are valid,
can be very difficult, that is, require a great deal of coﬁputational work.

A finite language L of length n over the alphabet}i%:B a subget of the

n
set of n-tuples, {E:a} . To each languege L we associate a function fL(Eﬂ

defined by
1 =xel

fL(:?) = v (hh }
O x 4L

These functions determine whether or not a program is valid and can be difficult

to compute as the following theorem shows.

THEOREM 5 For large n and most finite languages L C (E:a)n, the functiors

foiﬁ require a computational work W which is bounded by

. . (1;6) a ' ’ (45)

vhere 0 < ¢ €« 1 is fixed and r is the fan-in of the logic set used to measure

work.

PROOF The proof follows from Lemma 1, equation (12) and the fact that
, n : ' n

there are 22 distinct languages L C'(E:a) . Q.E.D.

Theorem 5 establishes a good case for limiting the number of program-
ming languages which are developed. If the number becomes too large, it is
certain that some will require an enormous amount of work jusf to verify that
programs are valid.

Many bigher level languages (which are not modeled as finite languages
but used that way) allow the use of left and right parentheses to segment state-
. ments. We model this property of\languages with the following finite languzge

Lp: . : .

Lp = {kapjbn-gjl lsj= n/2; n even} (46)

Here A\ designates a left paranthesis, p a right paranthesis and b designates |
a blank, | ‘

Eﬁggg@g_é Let pr(iﬁ be computed by a generél purpose machine with random
access or tape storage with storage alphabet and input slphabet of fixed size

w. Then, the work required to compute f7, x), Wp, for large n is bounded by
D :

i J < 3 . . s
(1-¢) n \logEn/loggw. SV, <oD /loggw (li7)

for some fixed e, O < ¢ <1 and some small constant o« > O,
PROOF The work done is Wp = XPTP, where'X? includes all logic elements
in the standard form of the general purpose tape or random access machine.
Then, Xb-z gf, the totsl storage outside of that in the small and fixed finite
control. We now show that .f > (1-¢) Llog,n. |

) ' Suppose that the n symbols in a string from LP are read and that the
tog;l ﬁﬁmberrof'states which the machine can be in is no more than nlwevﬁ The
machine nmust execute Tp cycles, where Tp 2 n/loggw, to read the n symbols so let

513855585 be the sequence of states assumed by the machine. Clearly,
P

for n large there must be at least two states Si’sj’ with 1 < j < n/2 such

d

that'si = Sj‘ This implies that the response of the machine to lapsben" and

?s.lp‘jb2n~J must be the same. Bubt this cannol be true so the machine must have

mofe than nl"e‘ state, Accounting for the fixed number of‘states in the
finite control, this implies that 45{ > (l-e)loggn for e }lé', n large., There-
fore, X?Tp p= @fib gnd the lower bound'of (47) follows.
: To derive the upper bound, we program a tape me chine with.;afszn/logew
ﬁords of storage to execute no more than a number of cycles proportional to n2
td run up and down a string of m symbols checking off \< and p's in pairs.
| Q.E.D.
Undoubteély, the bounds on Wb given above can be improved. The point

of the theorem is that estimates can be made of the amount work which

will be necessary to perform important compiling functions.

8. A Quantum - Mechanical Bound on Complexity

In this section we derive a bound on the maximum complexity of any

function that can be computed in t seconds with E units of energy. Ve assume

that the speed of operation of computers is so large that the quantwn-mechanical

and individually accessible memory cells (delay lines).

The logic elements have‘several inputs and we view the ection of one
element as that of determining the state of each of its inputs by mezsuring
energy levels and coﬁputing and registering an output state. We assume (as is
true for sqlids) that to discriminate between two energy levels with separation
/ AE requires the expenditure of AE units of energy. Then, the maximum number
~of logic eleménts X vhich can be used if no more than E units of,enérgy are

to be expended satisfies

X < E/AE (48)

vhere AE is the minimum separation of energy levels in the computer.
Each logic element has a %witching time At which cannot be less than
the time to measure the states of its inputs. Then, the number of cycles

which a machine can complete in t seconds, T satisfies
T < t/pt. (49)

Also, AE and At are related by the Heisenberg uncertainty relation as follows:
AEAL = h/2n ‘ (50)

vhere h is Planck's constant. That is, a reliable measurement of an energy
difference AE requires at least At seconds vhere At satisfies (50).

Then, for a function £ to be computable in t seconds with E joules
requires that

o
Cﬂ(f) < XT = (BEt) x 10

where O is the set of logic elements used for the realization of the "gquantum-

mechanical computers.”

We take 2 to be the set of 2-input binary logic
elements. It is doubtful whether the limit of (51) will ever be approached.
Nevertheless, it is instructive to observe the following:
THEOREM 7 “Subject to the conditions given above, Qést Boélean functions
f{E;E"g§: 7 with p = 160 or more cennot be computed in one hour with one
kiléiattzof power (1 joule = 1 watt-second).

While it is difficult to believe that one would want to compute the
- most complex Boolean functions of p variables, it is interesting that with

p = 160 they cannot be computed with a very sizable amount of power in a

‘considerable length of time.

9. Conclusions

The thread that binds the many topics of this paper together ié the
measuvre of computational work and its relétion to combinational complexity.
The numerous applications of this relation have provided new information on the
computation of functions on general purpose cbmputers and have led to quantitativev
comparisons of disk, tape apd randem access storage. We have discussed the
work potentisl of a computing system, commented on the problem of program veri-
fication and summarized the aveilable knowledge on combinational complexity.
We have also given an amusing quantqumechanical bound on complexity.

It is hoped that more detailed models for computers than those offered
here can be developed so that more precise and useful results on the computstion

of functions on finite machines can be derived.

ACKNOWLEDGVENT

The author acknowledges the encouragement and support‘provided by
Drs. E. C. Posner and S. Butman as well as conversations with them and other
nembers of the Communication Systems Research Section, JPL, and conversations

with Drs. L. Kleinrock of UCLA and L. H. Harper, U.C. Riverside.

REFERENCES

Minsky, M., "Form and Computer Science," Journal, ACM, Vol. 17, No. 2,
pp. 197-215, (April, 1970).

Savage, J. E., "The Complexity of Decodérs - Part II: Computational
Work and Decoding Time," to be published, IEEE Trans. on
Information Theory, (Jan. 1971).

Lupanov, O. B., "A Method of Circuit Synthesis," Izv. VuzZ, Radiofizikaj
No. 1, 120 (1958).

Shannon, C. E., "The Synthesis of Two-Terminal Switching Circuits,”
Bell System Technical J., Vol. 28, pp. 59-98, (1949).

Muller, D. E., "Complexity in Electronic Switching Circuits,” IRE
Trans. on Electronic Computers, Vol. EC-5, pp. 15-19, (March,
- 1956). |

i

l

[OPOW SUIYDDI [priuenbeg T ,w,mm ._

AN

e

a2Uu
uryopyy [pluenbag o Jus|pAalnby jpuolipUIqWoD vz *81g
: g P o LB

AN
b

UOJsUDdXT WIBIUIY PUD UOHDUNY JO UoHIUIe(Jojngol ¢ *Bly

0 l L L |
0 0 L L
0 !) l
L 0 0 L
” l L l 0
,_ 0 0 l 0
mmmm_x+mxmxw+mxmmWnAmxmx_xI ’ L i . .
0 0 0 0)
3 Ex ox Ly

aq~a.vkmﬂ.s“hl‘l.

<,‘w s33ndWoTy USIYAL suULysow [oriusnbeg "4 513

A
i
(74 i L4
%w mw, >.,
N |
|
ieg | _ L+74
T |]
_ | _
_ _ _
. w _
* | *
4 ;

e TR G GRS

g

4 sogndwoly Yoy supyoeyy jpliuenbag ¢ By

ey +7 5 I+74
i — 1

| ! !

| | “

|

A A A

i
L ————— T 74

suolidUNg Ubs|oog saynduwioD) Yoiysp dulyobyy [pliuenbsg o b1

™Y,

ngg

READ =3
CONTROL—————I>¢
Lo
- WRITE >

' Fig 7 _" Mode! for Disk Unit

[04jU0D pupd o)) ebnuoyg *8 814
° |

© 1130

)

(1 -u) wouy Acwm\u.mcwm”:wmm 104 4nod1D, o & ,,.wm.ﬂ

(v) ¢ u (W tw

|
S oA

[& ﬁw,\
< & B
Q) —_—_
Z
(1-u) 1T (1-u) lw
:rcv.\\\v
U L=4y Tx Ly

